

Precision, Very Low Noise, Low Input **Bias Current Operational Amplifiers**

AD8671/AD8672/AD8674

FEATURES

Very low noise: 2.8 nV/√Hz, 77 nV p-p Wide bandwidth: 10 MHz Low input bias current: 12 nA max Low offset voltage: 75 µV max High open-loop gain: 120 dB min Low supply current: 3 mA per amplifier Dual-supply operation: ±5 V to ±15 V **Unity-gain stable** No phase reversal

APPLICATIONS

PLL filters Filters for GPS Instrumentation Sensors and controls **Professional quality audio**

GENERAL DESCRIPTION

The AD8671/AD8672/AD8674 are very high precision amplifiers featuring very low noise, very low offset voltage and drift, low input bias current, 10 MHz bandwidth, and low power consumption. Outputs are stable with capacitive loads of over 1000 pF. Supply current is less than 3 mA per amplifier at 30 V.

The AD8671/AD8672/AD8674's combination of ultralow noise, high precision, speed, and stability is unmatched. The MSOP version of the AD8671/AD8672 requires only half the board space of comparable amplifiers.

Applications for these amplifiers include high quality PLL filters, precision filters, medical and analytical instrumentation, precision power supply controls, ATE, data acquisition, and precision controls as well as professional quality audio.

The AD8671/AD8672/AD8674 are specified over the extended industrial temperature range (-40°C to +125°C).

The AD8671/AD8672 are available in the 8-lead SOIC and 8-lead MSOP packages. The AD8674 is available in 14-lead SOIC and 14-lead TSSOP packages.

Surface-mount devices in MSOP packages are available in tape and reel only.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

PIN CONFIGURATIONS

Figure 4. 8-Lead MSOP (RM-8)

Figure 3. 8-Lead SOIC-N (R-8)

NC

-IN

+IN

V-

+IN A

Figure 5. 14-Lead SOIC_N (R-14)

Figure 6. 14-Lead TSSOP (RU-14)

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS, ±5.0 V

 V_{S} = ±5.0 V, V_{CM} = 0 V, T_{A} = 25°C, unless otherwise noted.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			20	75	μV
		$-40^{\circ}C < T_A < +125^{\circ}C$		30	125	μV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}C < T_A < +125^{\circ}C$				
AD8671				0.3	0.5	μV/°C
AD8672/AD8674				0.3	0.8	μV/°C
Input Bias Current	IB		-12	+3	+12	nA
		+25°C < T _A < +125°C	-20	+5	+20	nA
		$-40^{\circ}C < T_A < +125^{\circ}C$	-40	+8	+40	nA
Input Offset Current	los		-12	+6	+12	nA
		+25°C < T _A < +125°C	-20	+6	+20	nA
		$-40^{\circ}C < T_A < +125^{\circ}C$	-40	+8	+40	nA
Input Voltage Range			-2.5		+2.5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -2.5 \text{ V to } +2.5 \text{ V}$	100	120		dB
Large Signal Voltage Gain	A _{VO}	$R_L = 2 \ k\Omega$, $V_O = -3 \ V \ to +3 \ V$	1000	6000		V/mV
Input Capacitance, Common Mode	CINCM			6.25		рF
Input Capacitance, Differential Mode	CINDM			7.5		рF
Input Resistance, Common Mode	R _{IN}			3.5		GΩ
Input Resistance, Differential Mode	RINDM			15		MΩ
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 2 k\Omega$, -40°C to +125°C	+3.8	+4.0		V
Output Voltage Low	Vol	$R_L = 2 k\Omega$, $-40^{\circ}C to + 125^{\circ}C$		-3.9	-3.8	V
Output Voltage High	V _{OH}	$R_L = 600 \Omega$	+3.7	+3.9		V
Output Voltage Low	Vol	$R_L = 600 \Omega$		-3.8	-3.7	V
Output Current	lout			±10		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_s = \pm 4 V \text{ to } \pm 18 V$				
AD8671/AD8672			110	130		dB
AD8674			106	115		dB
Supply Current/Amplifier	lsy	$V_{O} = 0 V$		3	3.5	mA
		$-40^{\circ}C < T_A < +125^{\circ}C$			4.2	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		4		V/µs
Settling Time	ts	To 0.1% (4 V step, G = 1)		1.4		μs
		To 0.01% (4 V step, G = 1)		5.1		μs
Gain Bandwidth Product	GBP			10		MHz
NOISE PERFORMANCE						
Peak-to-Peak Noise	en p-p	0.1 Hz to 10 Hz		77	100	nV p-p
Voltage Noise Density	en	f = 1 kHz		2.8	3.8	nV/√Hz
Current Noise Density	İn	f = 1 kHz		0.3		pA/√Hz
Channel Separation						
AD8672/AD8674	Cs	f = 1 kHz		-130		dB
		f = 10 kHz		-105		dB

ELECTRICAL CHARACTERISTICS, ±15 V

 $V_{\text{S}}=\pm 15$ V, V_{CM} = 0 V, T_{A} = 25°C, unless otherwise noted.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			20	75	μV
		-40°C < T _A < +125°C		30	125	μV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40°C < T _A < +125°C				
AD8671				0.3	0.5	μV/°C
AD8672/AD8674				0.3	0.8	μV/°C
Input Bias Current	IB		-12	+3	+12	nA
		+25°C < T _A < +125°C	-20	+5	+20	nA
		-40°C < T _A < +125°C	-40	+8	+40	nA
Input Offset Current	los		-12	+6	+12	nA
		+25°C < T _A < +125°C	-20	+6	+20	nA
		-40°C < T _A < +125°C	-40	+8	+40	nA
Input Voltage Range			-12		+12	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -12 V \text{ to } +12 V$	100	120		dB
Large Signal Voltage Gain	Avo	$R_L = 2 k\Omega$, $V_O = -10 V$ to $+10 V$	1000	6000		V/mV
Input Capacitance, Common Mode	CINCM			6.25		рF
Input Capacitance, Differential Mode	CINDM			7.5		pF
Input Resistance, Common Mode	R _{IN}			3.5		GΩ
Input Resistance, Differential Mode	RINDM			15		MΩ
OUTPUT CHARACTERISTICS						
Output Voltage High	Voh	$R_{L} = 2 k\Omega, -40^{\circ}C \text{ to } +125^{\circ}C$	+13.2	+13.8		v
Output Voltage Low	Vol	$R_{L} = 2 k\Omega, -40^{\circ}C \text{ to } +125^{\circ}C$		-13.8	-13.2	v
Output Voltage High	Vон	$R_L = 600 \Omega$	+11	+12.3		v
Output Voltage Low	Vol	$R_L = 600 \Omega$		-12.4	-11	v
Output Current	lout			±20		mA
Short Circuit Current	lsc			±30		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_s = \pm 4 V \text{ to } \pm 18 V$				
AD8671/AD8672			110	130		dB
AD8674			106	115		dB
Supply Current/Amplifier	I _{SY}	$V_{\rm O} = 0 V$		3	3.5	mA
		–40°C <t<sub>A < +125°C</t<sub>			4.2	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		4		V/µs
Settling Time	ts	To 0.1% (10 V step, G = 1)		2.2		μs
-		To 0.01% (10 V step, G = 1)		6.3		μs
Gain Bandwidth Product	GBP			10		MHz
NOISE PERFORMANCE						
Peak-to-Peak Noise	en p-p	0.1 Hz to 10 Hz		77	100	nV p-p
Voltage Noise Density	en	f = 1 kHz		2.8	3.8	nV/√Hz
Current Noise Density	İn	f = 1 kHz		0.3		pA/√Hz
Channel Separation						
AD8672/AD8674	Cs	f = 1 kHz		-130		dB
		f = 10 kHz		-105		dB

ABSOLUTE MAXIMUM RATINGS

Table 3.1

Parameter	Rating
Supply Voltage	36 V
Input Voltage	Vs- to Vs+
Differential Input Voltage	±0.7 V
Output Short-Circuit Duration	Indefinite
Storage Temperature Range	
All Packages	–65°C to +150°C
Operating Temperature Range	
All Packages	–40°C to +125°C
Junction Temperature Range	
All Packages	–65°C to +150°C
Lead Temperature Range (Soldering, 60 sec)	300°C

¹ Absolute maximum ratings apply at 25°C, unless otherwise noted.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Package Characteristics

Package Type	θ_{JA}^{1}	θ」	Unit
8-Lead MSOP (RM)	190	44	°C/W
8-Lead SOIC_N (R)	158	43	°C/W
14-Lead SOIC_N (R)	120	36	°C/W
14-Lead TSSOP (RU)	180	35	°C/W

 $^1\theta_{JA}$ is specified for the worst-case conditions, that is., θ_{JA} is specified for the device soldered in circuit board for surface-mount packages.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD8671/AD8672/AD8674

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 43. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)

Dimensions shown in millimeters and (inches)

Figure 44. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

AD8671/AD8672/AD8674

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
AD8671AR	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8671AR-REEL	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8671AR-REEL7	–40°C to +125°C	8-Lead SOIC_N	R-8	
AD8671ARZ ¹	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8671ARZ-REEL ¹	–40°C to +125°C	8-Lead SOIC_N	R-8	
AD8671ARZ-REEL71	–40°C to +125°C	8-Lead SOIC_N	R-8	
AD8671ARM-R2	–40°C to +125°C	8-Lead MSOP	RM-8	BGA
AD8671ARM-REEL	-40°C to +125°C	8-Lead MSOP	RM-8	BGA
AD8671ARMZ-R21	–40°C to +125°C	8-Lead MSOP	RM-8	A0V
AD8671ARMZ-REEL ¹	-40°C to +125°C	8-Lead MSOP	RM-8	A0V
AD8672AR	–40°C to +125°C	8-Lead SOIC_N	R-8	
AD8672AR-REEL	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8672AR-REEL7	–40°C to +125°C	8-Lead SOIC_N	R-8	
AD8672ARZ ¹	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8672ARZ-REEL ¹	–40°C to +125°C	8-Lead SOIC_N	R-8	
AD8672ARZ-REEL71	–40°C to +125°C	8-Lead SOIC_N	R-8	
AD8672ARM-R2	–40°C to +125°C	8-Lead MSOP	RM-8	BHA
AD8672ARM-REEL	–40°C to +125°C	8-Lead MSOP	RM-8	BHA
AD8672ARMZ-R21	–40°C to +125°C	8-Lead MSOP	RM-8	A0W
AD8672ARMZ-REEL ¹	–40°C to +125°C	8-Lead MSOP	RM-8	A0W
AD8674AR	–40°C to +125°C	14-Lead SOIC_N	R-14	
AD8674AR-REEL	–40°C to +125°C	14-Lead SOIC_N	R-14	
AD8674AR-REEL7	–40°C to +125°C	14-Lead SOIC_N	R-14	
AD8674ARZ ¹	–40°C to +125°C	14-Lead SOIC_N	R-14	
AD8674ARZ-REEL ¹	–40°C to +125°C	14-Lead SOIC_N	R-14	
AD8674ARZ-REEL71	–40°C to +125°C	14-Lead SOIC_N	R-14	
AD8674ARU	–40°C to +125°C	14-Lead TSSOP	RU-14	
AD8674ARU-REEL	–40°C to +125°C	14-Lead TSSOP	RU-14	
AD8674ARUZ ¹	–40°C to +125°C	14-Lead TSSOP	RU-14	
AD8674ARUZ-REEL ¹	–40°C to +125°C	14-Lead TSSOP	RU-14	

 1 Z = Pb-free part.

Rev. C | Page 16 of 16